Thee document
t:r public retecs
Aletiioaicn 15

_ : ' Abstract

AD-A274 258
L]

Memory Subsystem Performance
of Programs Using Copying Garbage Collection

Amer Diwan David Tarditi Fliot Moss!

%E
December 10, 1993 mg
CMU-CS-93-210 T =
DTIC TE
| =
ELECTE | onE=
DEC301983 o=
A “” School of Computer Science N
_: Carnegie Mellon University //3\\ \)\

Pittsburgh, PA 15213

This paper will appear in the Proceedings of the 21st Annual ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, Portland, Oregon, January 16-19, 1994. It is
also published as Fox Memorandum CMU-CS-FOX-93-06

IS
1 1.as neen approved
¢z and 3ale; s
saumited

Heap allocation with copying garbage collection is believed to have poor memory subsystem per-
formance. We conducted a study of the memory subsystem performance of heap allocation for
memory subsystems found on many machines. We found that many machines support heap alloca-
tion poorly. However, with the appropriate memory subsystem organization, heap allocation can
have good memory subsystem performance.

"The authors can be reached electronically via Internet addresses diwan@cs.umass edu, dtarditi@cs.cmu edu,
moss@cs.umass. edu. This work was done while Amer Diwan and Eliot Moss were on leave {rom University of
Massachusetts.

This research is sponsored by the Defense Advanced Research Projects Agency, DoD, through ARPA Order 8313,
and monitored by ESD/AVS under contract F19628-91-C-0168. Views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the United States Government. David Tarditi is also supported
by an AT&T PhD Scholarship.

1 Introduction

Heap allocation with copying garbage collection is widely believed to have pour memory subsystem
performance {30, 37, 38, 23, 39]. To investigate this, we conducted an extensive study of memory
subsystem performance of heap allocation intensive programs on memory subsystem organizations
typical of many workstations. The programs. compiled with the SML,'NJ compiler 3., do tremen-
dous amounts of heap allocation, allocating one word every to 1 to 10 instructions. The programs
used a generational copving garbage collector to manage their heaps. To our surprise. we found
that for some configurations corresponding to actual machines, such as the DECStation 5000 200.
the memory subsystem performance was comparable to that of C and Fortran programs 10 : pro-
grams ran only 16% slower than they would have with an infinitely fast memory. This performance
is similar to that for C and Fortran programs For other configurations, the slowdown was often
higher than 100°¢.

The memory subsystem features important for achieving good performance with heap allocation
are subblock placement with a subblock size of one word combined with write-allocate on write-
miss, a write buffer and page-mode writes, and cache sizes of 32K or larger. Heap allocation
performs poorly on machines which do not have one or more of these features: this includes most
current workstations.

Our work differs from previous reported work "30. 37. 38. 23. 39" on memorv subsvstem perfor-
mance of heap allocation in two important wayvs. First, previous work used overall miss ratios as
the performance metric and neglected the potentiallv different costs of read and write misses. Over-
all miss ratios are misleading indicators of performance: a high overall miss ratio does not alwavs
translate to bad performance. We separate read misses {romn write misses. Second. previous work
did not model the entire memory subsystem: it concentrated solely on caches. Memoryv subsvstem
features such as write buffers and page-mode writes interact with the costs of hits and misses in
the cache and should be simulated to give a correct picture of memory subsystem behavior. We
simulate the entire memory subsystem.

We did the study by instrumenting programs to produce traces of all memory references. We
fed the references into a memory subsystem simulator which calcufated a performance penalty due
to the memory subsystem. We fixed the architecture to be the MIPS R3000 22" and varied cache
configurations to cover the design space tvpical of workstations such as DECStatious, SPAR(CSta-
tions, and HP 9000 series 700. All the memory subsystem configurations we studied had a write
buffer and page-mode writes. We studied eight substantial programs.

We varied the following cache parameters: size (8K to 128K), block size (16 or 32 bytes).
write miss policy (write allocate or write no allocate), subblock placement (with and without).
and associativity (one and two way). We simulated only split instruction and data caches. i.e..
no unified caches. We report data only for write-through caches but the results extend easilv to
write-back caches (see Section 5.2).

Section 2 gives backyround information. Section 3 describes related work. Section 1 describes
the simulation methods used, the benchmarks used, and the metrics used to measure memorv
subsystem performance. Section 5 presents the results of the simulation studies, and an analvsis
of those results. Section 6 concludes.

) NSRRI LoD 3

2 Background

The following sections describe memory subsvstems, copyving garbage collection, SML. and the
SML/NJ compiler.

2.1 Memory subsystems

This section reviews the organization of memory subsystems. Since terminology for memorv sub-
systems is not standardized we use Przybylski's terminology :31,.

It is well known that CPUs are getting faster relative to DRAM memory chips: main memory
cannot supply the CPU with instructions and data fast enough. A solution to this problem is to
use a cache, a small fast memory placed between the CPU and main memorv that holds a subset of
memory. If the CPU reads a memory location which is in the cache, the value is returned quicklv.
Otherwise the CPU must wait for the value to be fetched from main memory. .

Caches work by reducing the average memory access time. This is possible since memory
accesses exhibit temporal and spatial localitv. Temporal locality means that a memaory location
that was referenced recently will probably be referenced again soon and is thus worth storing in
the cache. Spatial locality means that a memory location near one which was referenced recently
will probably be referenced soon. Thus, it is worth moving the neighboring locations to the cache.

2.1.1 Cache organization

This section describes cache organization for a single level of caching. A cache is divided into Hlocks.
each of which has an associated tag. A cache block represents a block of memory. Cache blocks
are grouped into sels. A memory block may reside in the cache in exactly one set, but mav reside
in any block within the set. The tag for a cache block indicates what memory block it holds. A
cache with sets of size n is said to be n-way associative. If n=1, the cache is called direct-mapped.
Some caches have valid bits, to indicate what sections of a block hold valid data. A subblock is
the smallest part of a cache with which a valid bit is associated. In this paper, subblock placement
implies a subblock size of one word, i.e., valid bits are associated with each word. Moreover, on a
read miss, the whole block is brought into the cache not just the subblock that missed. Przvbylski
[31] notes that this is a good choice.

A memory access for which a block is resident in the cache is called a hit. Otherwise. the
memory access is a miss.

A read request for memory location m causes m to be mapped to a set. All the tags and valid
bits (if any) in the set are checked to see if any block contains the memory block for m. If a cache
block contains the memory block for m, the word corresponding to m is selected from the cache
block. A read miss is handled by copying the missing block from the main memory to the cache.

A write hit is always written to the cache. There are several policies for handling a write miss.
differing in their performance penalties. For each of the policies, the actions taken on a write miss
are:

1. write no allocate:

e Do not allocate a block in the cache

e Send the write to main memory, without putting the write in the cache.

2. write allocate, no subblock placement:

o Allocate a block in the cache.
e Fetch the corresponding memory block from main menmory.

o Write the word to the cache and to memory.
3. write allocate, subblock placement!:

e Allocate a block in the cache.
e \Write the word to the cache and to memory.

e Invalidate the remaining words in the block.

Write allocate subblock placement will have a lower write miss penaltv than write allocat: no
subblock placement since it avoids fetching a memory block from main memorv. In addition. 1t
will have a lower penalty than write no allocate if the written word is read before being evicted
from the cache. See Jouppi 21, for more information on write miss policies.

A miss is a compulsory miss if it is due to a memory block being accessed for the first time.
A miss is a capacity miss if it results from the cache {size (") not being big enough 1o hold ail the
memory blocks used by a program. This corresponds to the misses in a fullv associative caciie of
size C with LRU replacement policy (minus the compulsory misses). [t is a conflict miss if it results
from two memory blocks mapping to the same set. 19

A write buffer mayv be used to reduce the cost of writes to main memorv. A write hufforis a
queue containing writes that are to be sent to main memorv. When the CPU does a writeo the
write is placed in the write buffer and the CPU continues without waiting for the write to finish.
The write buffer retires entries to main memorv using free memorv cveles. A write bhuffor stall
occurs if the write buffer is full when the CPU tries to do a write ur tries to read a location queued
up in the write buffer.

Main memory is divided into DRAM pages. Page-mode writes reduce the latency of writes to
the same DRAM page when there are no intervening memory accesses to another DRAMI page.

2.1.2 Memory subsystem performance

This section describes two metrics for measuring the performance of memory subsvstems. One
popular metric is the cache miss ratio. The cache miss ratio is the number of memorv accesses that
miss divided by the total number of memory accesses. Since different kinds of memory accesses
usually have different miss costs, it is useful to have miss ratios for each kind of access.

Cache miss ratios alone do not measure the impact of the memory subsvstem on overall svstem
performance. A metric which better measures this is the contribution of the memory subsvstem to
CPI (cycles per useful instruction®). CPI is calculated for a program as number of CPU vycles fo
complele a program / total number of useful instructions ezecuted. It measures how etficientlv the
CPU is being utilized. The contribution of the memorv subsvstem to CPlis calculated as number of
CPU cycles spent waiting for the memory subsystem - total number of useful instructions crccuted.
As an example, on a DECStation 3000/200, the lowest CPI possible is 1. completing one instruction
per cycle. If the CPT for a program is 1.50, and the memoryv contribution to CPlis 0.3, 20% of
the CPU cycles are spent waiting for the memory subsystem (the rest mayv be due to other causes

! Recall subblock size is assumed to be 1 word.

2All instructions besides nops are considered to be useful. A nop (null operation) mstruction s a software.
controlled pipeline stall

% check for heap overflow
cmp alloc+12,top
branch-if-gt call-gc

% write the object

store tag,(alloc)

store ra,4(alloc)

store rd,8(alloc)

% save pointer to object
move alloc+4,result

% add 12 to alloc pointer
add alloc,12

Figure 1: Pseudo-assembly code for allocating an object

such as nops, multi-cvcle instructions like integer division. ete.). CPl is machine dependent since
it is calculated using actual penalties.

2.2 Copying garbage collection

A copying garbage collector 17. 11 reclaims an area of memoryv bv copving all the live inon-
garbage) data to another area of memory. This means that all data in the garbage-collected area
is now garbage, and the area can be re-used. Since memorv is alwavs reclaimed in large contizuons
areas, objects can be sequentially allocated from such areas at the cost of onlv a few instructions.
Figure 1 gives an example of pseudo-assembly code for allocating a cons cell. ra contains the car
cell contents, rd contains the cdr cell contents, alloc is the address of the next free word in the
allocation area, and top contains the end of the allocation area.

The SML,/NJ compiler uses a simple generational copving garbage collector 27 . Memorv is
divided into an old generation and an allocation area. New objects are created in the allocation
area; garbage collection copies the live objects in the allocation area to the old generation. freeing
up the allocation area. Generational garbage collection relies on the fact that most allocated objects
die voung; thus most objects (about 99% |3, p. 206) are not copied from the allocation area. This
makes the garbage collector efficient, since it works mostly on an area of memory where it is verv
effective at reclaiming space.

The most important property of a copving collector with respect to memory subsvstem behavior
is that allocation initializes memory which has not been touched in a long time and is thus unlikelv
to be in the cache. This is especially true if the allocation area is large relative t + the size of the
cache since allocation will knock evervthing out of the cache. This means that for small caches
there will be a large number of (write) misses.

For example consider the code in Figure 1. Assume that a cache write miss costs 16 CPU cvceles
and that the block size is 4 words. On average, everv fourth word allocated causes a write miss.
Thus, the average memory subsystem cost of allocating a word on the heap is 4 cveles. The average
cost for allocating a cons cell is seven cvcles (at one cvele per instruction) plus 12 cveles for the
memory subsystem overhead. Thus. while allocation is cheap in terms of instruction counts. it is
expensive in terms of machine cycle counts.

2.3 Standard ML

Standard ML (SML) 29" is a call-by-value, lexically scoped language with higher-order functions.
garbage collection, static tvping, a polyvinorphic type system, provable safetv properties. a sophis-
ticated module system, and a dvnamically scoped exception mechanism.

SML encourages a non-imperative programming stvle. Variables cannot be altered once thev
are bound. and by default data structures cannot be altered once they are created. Lisp’s rplaca
and rplacd do not exist for the default definition of lists in SML. The onlv kinds of assignable data
structures are ref cells and arravs®, which must be explicitly declared. To emphasis the point.
assignments are permitted but discouraged as a general programming stvle. The implications of
this non-imperative programming stvle for compilation are clear: SML programs tend to do more
allocation and copving than programs written in imperative languages.

SML is most closely related to Lisp and Scheme 33, Implementation techniques for one of these
languages are mostlv applicable to the other languages. with the following caveats: SML programs
tend to be less imperative than Lisp or Scheme programs and Scheme and SML programs use
function calls more frequently than Lisp. since recursion is the usnal wav 1o achieve tieration in

Scheme and S)L.

2.4 SML/NJ compiler

The SML NJ compiler 3 is a publiclv available compiler for SML. We used version 0,81, The
compiler concentrates on making allocation cheap and function calls fast. Allocation iy done in-
line. except for the allocation of arravs. \ggressive 3-reduction (inlining) is used to eliminate
functions calls and their associated overhead. Function arguments are passed in registers when
possible, and register targeting is used to minimize register shuffling at function calls. A split
caller/callee-save register convention is used to avoid excessive spilling of registers. The compiler
also does constant-folding, elimination of functions which trivially call other functions. limited code
hoisting, uncurrying, and instruction scheduling.

The most controversial design decision in the compiler was to allocate procedure activation
records on the heap instead of the stack 1, 5. In principle. the presence of higher-order functions
means that procedure activation records must be allocated on the heap. With a suitable analvsis,
a stack can be used to store most activation records 2}. However, using onlv a heap simplifies
the compiler, the run-time system 2., and the implementation of first-class continuations 1%,
The decision to use only a heap was controversial because it greatly increases the amount of heap
allocation, which is believed to cause poor memory subsystem performance.

3 Related Work

There have been manv studies of the cache hehavior of svstems using heap allocation and some form
of copying garbage collection. Peng and Sohi 30. examined the data cache behavior of some small
Lisp programs. Thev used trace-driven simulation. and proposed an ALLOCATE instruction for
improving cache behavior, which allocates a block in the cache without fetching it from memory.
Wilson et. al. 37. 38! argued that cache performance of programs with generational garbage
collection will improve substantially when the voungest generation fits in the cache. Koopman 1.
al. 23 studied the effect of cache organization on combinator graph reduction, an implementation

? Although the language definition omitted arravs. all implementations have arrays.

technique for lazy functional programming languages. Combinator graph reduction does more
heap allocation and assignments than SMI/NJ programs. They observed the importance of a
write-allocate policy with subblock placement for improving heap allocation. Zorn 39 studied the
impact of cache behavior on the performance of a Common Lisp system, when stop-and-copy and
mark-and-sweep garbage collection algorithins were used. He concluded that programs run with
mark-and-sweep have substantially better cache locality than when run with stop-and-copy.

These works all used data cache miss ratios to evaluate cache performance. Thev did not
separate read and write misses. despite the different costs of these misses. Also, they did nrot
simulate the entire memory subsystem. Qur work scparates read misses from write misses and
completely rnodels the memory subsyvstem, including write buffers and page-mode writes.

Appel 31 estimated CPI for the SNML/NJ svstem on a single machine using elapsed time and
instruction counts. His CPI differs substantially from ours. Apparently instructions were under-
counted in his measurements 1.

Jouppi [21] studied the effect of cache write policies on the performance of C and TFortran
programs. Our class of programs is different from his. but his conclusions support ours: that a
write-allocate policy with subblock placement is a desirable architecture feature. He found that
the write miss ratio for the programs he studied was comparable to the read miss ratio, and that
write-allocate with subblock placement eliminated the cost of write misses. For programs compiled
with the SML;NJ compiler, this is even more important due to the high number of write misses
caused by allocation.

4 Methodology

We used trace-driven simulations to evaluate the memory subsvstem performance of programs.
For trace-driven simulations to be useful, there must be an accurate simulation model and a good
selection of benchmarks. Simulations that make simplifving assumptions about important aspects
of the system being modeled can yield misleading results. Toy benchmarks, or nnrepresentative
benchmarks, can be equally misleading. We have devoted much effort to addressing these issues.

4.1 Tools

We have extended QPT 7, 25, 26] to produce memory traces for SNML 'NJ programs. QP T rewrites
an executable program to produce a full instruction and data trace. Because QPT operates on the
executable program, it can trace both the SML code and the garbage collector (written in C).

We used Tycho (20| for the memory subsystem simulations. Tvcho uses a special case of all-
associativity simulation (28] to simulate multiple caches concurrently. We have added a write-buffer
simulator to Tycho, which concurrently simulates a write buffer for each instruction and data cache
pair being simulated. The write-buffer simulator also takes page-mode writes and memorv refreshes
into consideration.

4.2 Simplifications and Assumptions

We wanted to simulate the memory subsystems as completelv as we could. Thus. we have tried to
minimize simplifications which may reduce the validity of our data. The most important simplifi-
cations are:

1. We ignore the effects of context switches and svstem calls.

2, Our simulations are driven by virtual addresses even though many current machines have
physically-addressed caches.

3. We use default compilation flags which enable extensive optimizations. We set the soft limit
of the garbage collector to 20000K*.

4. When comparing different cache organizations we assume that the CPU cvcle time is the
same.

4.3 Benchmarks

Table 1 describes the benchmark programs®. Knuth-Bendiz. Lezgen. Life. Simple, VLI, and
YACC are identical to the benchmarks measured bv Appel 35 Table 2 gives the sizes of the
benchmarks in terms of lines of SML code (excluding comments and blank lines). maxinum heap
size in kilobytes, size of the compiled code in kilobytes (does not include the garbage collector and
other run-time support code which is about 60K)7. and run time. in seconds. on a DECStation
3000,200. The run times are the minimum of five runs.

Table 3 characterizes the memory references of the benchunark programs. The Wriles column
lists the number of full word writes done by the program and the garbage collector: the Assignments
column lists the non-initializing writes done by the program onlv. The Partial Writes column lists
the number of partial word (bytes, haif-word. etc.) writes done by the program and the garbage
collector®. All the benchmarks have long traces: most other work on memory svstem performance
uses traces that are an order of magnitude smaller. The benchmark programs do fe-. assignments:
the majority of the writes are initializing writes.

Table 4 gives the allocation statistics for each benchmark program ® . All allocation and sizes
are reported in words. The dllocation column lists the total allocation done by the benchmark. The
remaining columns break down the allocation by kind: closures for escaping functions. closures for
known functions, closures for callee-save continuations'’, records, and others (includes spill records,
arrays, strings, vectors, ref cells, store list records. and floating point numbers). For each allocation
kind, the % column is the percentage of total allocation allocated for that kind of object and Size
is the average size (including the 1 word tag) for that kind of object.

4.4 Metrics

We state cache performance numbers in cycles per useful instruction (CPI). All instructions besides
nops are considered useful.

*This is large enough to allow the garbage collector to resize the heap as needed.
® Available from the authors.

®The description of these benchmarks have been copied from 3'.

"The code size includes 207K for the standard libraries.

®Partial-word writes are distinguished from full-word writes since they are often more expensive than full-word
writes. We charge 11 cycle. for each partial-word write.

°This table corrects one given in the POPL 94 paper, which did not include allocation data for floating point
numbers. Our thanks to Darko Stefanovié for bringing this to our attention.

'%Closures for callee-save continuations can bhe trivially allocated on a stack in the absence of first class
continuations.

-1

| Program | De:(‘rlptmn

CWwW The Concurrency Workbench (12} is “a tool for dnal\ zing 7 networks of finite
state processes cxpressed in \Illllg_l"b_(alculus of Communicating Systems.
' Leroy An implementation of the Knuth-Bendix completion algorithim.
I Lexgen A lexical-analyzer generator 6—i;l;0L05511113 the lexical descri rlptmn of Stan-
dard ML — . S
Life The game of Life implemented using lists 32 .
PIA The Perspective Inversion Algorithm 36i decides the location of an object
, in a perspective video image.
i Simple A spherical fluid- d\namxcs prn"mm 13
i VLIW 1 A Very-Long- Instruction- Word lll:“‘ll(ll()n s(h(-dul(T .
! YACC An implementation of an L \LR(I) parser generator 35 processing the gram-
i mar of Standard NVLLL. .

Table 1: Benchmark Programs

; Size Run time’
Program lLines Heap size (}\') (nde s1Z (K) '\un 5((ssr) Gc [0
CW 5728 0T T e T T T

" Knuth-Bendix 191 2768 251 134T LR

. Lexgen 1229 2162 305 . 1507 1u6

| Life 111 | 1026 1 21 16.97 019

I PIA . 1454 | 1025 | 291 - 6.07 | 0.34

{ Simple 999 | 11571 314 25.58 123

UVLIW 3207 . 088 . 186 3 S B O T

' YACC 5751 1632 580 1.6V 198

Table 2: Sizes of Benchmark Programs
Program I Inst Fetches : Reads (%) | Writes (o) P1rnal Writes (%) \».slgnmcnu (';) \nps (-‘;:‘)_‘
CW T 523,245,987 | 17.61 Thel 001 T T 132
Knuth-Bendix + 312.086,438 19.66 - 231 T 000 T ood T Ran
Lexgen . 328,422,283 | "16.08 Ty T 0.20 TS U - 35 ¥ 2
Life 413,536,662 12.18 N 0.00 | T
PIA T 122.215,151 | 25.27 | 16.50 0.00 | T hon T
Simple i 604,611,016 1 23.86 l 14.06 | 0.00 . 0.05
VLIW T 399.812,033 17.89 1599 0.10 | TS
. YACC [133043324 1849 | 1466 0.32 | L R TR T

Table 3: Characteristics of benchmark programs

Allocation Lscaping Known Callee Saved T Records

 Program (words) © % Size ‘¢ Size % Size U Size L Sire
TCW 56,167,440 © 4.0 1 4.12 3.3 1539 . 67.2 . €20 195 3.01 6.3 4oy
[Knuth-Bendix | 67.733,930 | 37.6 1 6.60 | 0.1 11522 1495 4.90 2.7 3.00 0.1 1505
i Lexgen 733.046.319 | 3.4 1620 5.4 1296 72.7 640 151 300 37 697
| Life | 37.840,681 ' 0.2 ' 345 0.0 15.00 77.8 . 5.52 222 300 00 1029
T PIA T18.841.256 . 0.4 5.56 . 28.0 11.99 , 25.0 4.69 ' 12.7 3.41 339 3.22
" Simple T80.761.641 4.0 5.0 1.1 . 1533 681 6.43 ®3 300 185 3.1
| VLIW 59497132 . 9.9 522 ' 6.0 | 26.62 . 61.8 ' 7.67 20.3. 301 21 260
"YACC T17.015.250 2.3 4.83 153 15.35 . 54.8 7.4 237 301 40 1022

Table {: Allocation characteristics of benchmark programs

- ~d .
Table 5 lists the penalties used in the simulations. These numbers are derived {rom the penalties
for the DECStation 5000 /200, but are similar to those in other machines of the same class. Note
that write misses have no penalty (besides write buffer costs) for caches with subblock placement .

5 Results and Analysis

Section 5.1 qualitativelv analvzes the memoryv behavior of programs. Section 5.2 lists the cache

*)

configurations simulated and explains why theyv were selected. Sections 5.3 presents and analvzes

data for memory subsvstem performance.

5.1 Qualitative Analysis

Recall from Section 2 that SML/NJ uses a copving collector which leads to a large number of write
misses. The slowdown this translates into depends on the cache organization being used.

Recall from Section 4.3 that SML/NJ programs have the following properties. First. thev do few
assignments; the majority of the writes are initializing writes. Second, programs do heap allocation
at a furious rate: 0.1 to 0.22 words per instruction. Third, writes come in bunches because thev
correspond to initialization of a newly allocated area.

The burstiness of writes combined with the property of copving collectors mentioned above
suggests that an aggressive write policy is necessarv. In particular, writes should not stall the
CPU. Memory subsystem organizations where the CPU has to wait for a write to be written to
memory will perform poorly. Even memory subsystems where the CPU does not need to wait [or
writes if they are issued far apart (e.g., 2 cvcles apart in the HP 9000 series 700) mav perform
poorly due to the bunching of writes. This leads to two requirements on the memorv subsvstem.
First. a write buffer or fast page mode writes are essential to avoid waiting for writes to memorv.
Second, on a write miss, the memory subsvstem must avoid reading a cache block from memorv if
it will be written before being read. Of course, this requirement anly holds for caches with a write-
allocate policy. Subblock placement 23}, a block size of 1 word, and the ALLOCATE directive 30
can all achieve this'2. For large caches, when the allocation area fits in the cache and thus there

'In an actual implementation, the penalty of a miss may be one cycle since unlike hits. the tag and valid bits
needs to be written to the cache after the miss is detected. This will not change our results since 1t adds at most
0.02-0.05 to the CPI of caches with subblock placement.

2Since the effects on cache performance of these features are so similar, we talk just about subblock placement.

Task T Penalty (i eveles)
Nom e T
Page mode write T T
Read 16 bytes {from memory D
, Read 32 bytes fron memory R T
" Write hit or miss (subblocks) CT T T
“Write hit (16 bytes. no subblacks) 0
" Write hit (32 b)‘tc;-ﬁt)v_.\-'klvxl)l-)h;—l\'sr)ﬁ_”‘ T ’ 0
Write miss (16 byvtes. no subblocks) T T ')4

Write miss (32 byvtes. no subblocks)

Table 5: Penalties of memorv operations

Write Policv'Write Miss Policy Write Buifer Subblocks Assoc Block Size Cache Sizes

through allocate 6 deep ves 1.2 1630 Btes SKOI28K
through allocate 5 deep no o2 1632 bytes XK 128K
through no allocate 6 deep no 1.2 16,32 bytes RK 128K

Table 6: (Cache organizations studied
are few write misses. the benefit of subblock placement will be reduced.

5.2 Cache configurations simulated

Since the design space for memory subsvstemns is enormous we had to prune the design space that
we could studv. In this study, we restrict ourselves to features found in currently popular RISC
workstations. Exploration of more exotic memorv subsvstem features is left 1o future work. Table
6 summarizes the cache organizations simulated. Table 7 lists the memory subsvstem orvanization
for some popular machines.

We simulated only separate instruction and data caches (i.¢.. no unified caches). While many
current machines have separate caches (e.g.. DECStations. HP 700 series). there are some exceptions
(notably SPARCs).

We simulated cache sizes from 8K to 128K. This range includes the primary caches of most
current machines (see Table 7). We consider onlv direct mapped and two-wav set associative caches
(with LRU replacement).

We simulated block sizes of 16 bvtes and 32 hvtes. Przvbviski 31 notes that block <izes of 16
or 32 bytes optimize the read access time for the niemory parameters used in the CP{ caleulations
(see Section }.4).

We report data onlv for write-through caches but the CPI for write-back caches can be inferred
from our graphs. Write-through and write-back caches give identical misses. but the penalties tor
write hits and write misses differ. A write hit or miss in a write-back cache mav take one evele
more than in a write-through cache 21. This tells us at most how much the write-through graphs
need to be shifted to obtain the CPI graphs for write-back caches. For instance, if the program
has w writes and n useful instructions, then we must add w.n to the CPL For CW this adds 0.13.
Write-through and write-back caches mav have different write buffer penalties. We expect the write
buffer penalties for write-back caches to be smaller than that for write-through caches sitice writes

10

Architecture T TWrite Poliev Write .{]TSVSHVPU]’!»C?\T\\}{IC Vﬁlrilr:rﬂgahhrl.;('ksy,ri»(':; Block Size Cache Size

DS3100 16 through allocate 1 deep - 17 4 byvtes oK

‘DS5000:200 15 through allocate T 8 deep | ves 1 16 bytes 63K
HP 9000 34’ back allocate none no 1 32 bvtes 64K 2N
SPARCStation II 14 through no allocate ddeep no 1 32bvtes 64K

Note:
o SPARCStations have unified caches.
o Most HP 9000 series 700 caches are much smailer than 2M: (28K nstruction cactie and 256K data cacne Dor mmoaess 720
and 730, and 256K instructiuon cache and 256K data cache {ur muael 750

o The DS5000, 200 actualiv has a hiock size of four bvtes witn a fetch size f sivteen butes. This (s actual,. strorger tharn
subblock placement since it has a {uil tag on every “subbiock”

o The higher end HP 9000 machines imadel T35 and above Hrovaie A cac econtizo, tunt 1 s Lt ome et oy
The hint can specify that a dDiock will be overwritten nefire heing read. Ly ALids 118 Fead e A te Toeres

Table 7: Memorv subsvstem organization of ~ome popular maechines

to main memory are less frequent for write-back vaches than for write throngh caches In any case,
writ= buffer penalties are negligible even for write-through caches *Section 5.3

Two of the most important cache parameters are write allocate versus wrile wooalloc e Gre suf-
block placement versus no subblock placement. Of these. the combination write w1t <abdd ox
placement offer no improvement over write no alloeate no subblock placo ment for cache perfor
mance. Thus. we did not collect data for the write no allocate subblock place nre ot conticurathon,

We restrict ourselves onlv to the first two levels of the memorv hierarchy, which on ot car
machines corresponds to the primary cache and main memorv. The results. hiowever. are mosris
applicable when the second level is a secondary cache and the cost of accessing the secondary cache
is similar to the cost of accessing main memory on the DECStation 5000 200°% In such machines.
there is a memory subsystemn contribution to the CPI that we did not measure: a miss on the second
level cache. Therefore the CPI obtained on these machines can be higher than that reporred here.

We do not simulate the exotic features appearing on some newer machines. ~uch as ~tream
buffers, prefetching, and victim caches. These features can reduce the cache miss rates and miss
costs. Further work is needed to understand the impact of these features on performance of heap
allocation.

5.3 Memory Subsystem Performance

Memory subsystem performance is presented in summarv graphs and breakdown granhs. Fach
summary graph summarizes the memorv subsvstemn performance of one benchmark program for
a range of write-miss policies (write allocate or no write allocate). subblock placement cwith or
without), cache sizes (8K to 128K), and associativity {1 or 2). Fach curve in a snmmarv graph
corresponds to a different memory subsvstem organization. There are two summarv gravhs {or
each program, one for a block size of 16 bytes and another for a block size of 32 byres. bach
breakdown graph breaks down the memory subsvstem overhead into read misses. instruction-fetch
misses, write-buffer overhead, and partial-word write overhead for one configuration in a summary
graph. The write-buffer depth in these graphs is fixed at 6 entries.

Y For instance. Borg et al. ‘8] use 12 cycles as the latency for going to the second level cachie and 2000 250 v ces
for going to memory.

In this paper we present only the summary graphs for CW (Figure 2). The sunmunary uraphs
for other programs are similar to those for CW and are thus omitted for space considerations. Anv
significant differences between CW's graphs and the omitted graphs are noted in the text. Ligures
3 and 4 are the breakdown graphs for CW for the 16 bvte block size configurations: the remaining
breakdown graphs for CW are omitted for space considerations. The breakdown graphs for the other
benchmarks are similar and are thus also omitted for space considerations '*.

In the summary graphs, the nops curve is the base CPI: the number of nseful (not nop) in-
structions executed divided by the total number of instruction executed; this corresponds to the
CPI for a perfect memory subsystem!3. For the breakdown graphs, the nop area is thc CPIl con-
tribution of nops; reed miss is the CPI contribution of read misses; if miss is the CPI contribution
of instruction fetch misses; write buffer is the CPI contribution of the write buffer: partial word is
the CPI contribution of partial-word writes!®.

The 64K point on the write alloc, subblock, assoc=1 curves corresponds closelv to the DECSta-
tion 5000/200 memory subsystem.

In Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4 we describe the impact of write-miss policy and subblock
placement, associativity, block size. and cache size on the memory subsvstem performance of the
benchmark programs. In Section 5.3.5 we give the write buffer and partial-word write overheads.

5.3.1 Write Miss Policy and Subblock Placement

From the summary graphs, it is clear that the best cache organization we studied is write allo-
cate/subblock placement; in every case, write-allocate - subblock placement substantiallv outperforms
all other configurations. Surprisingly. for sufficiently large caches with the write allocate subblock
placement organization, the memorv subsyvstem performance of SML NJ programs is acceptable
(around 17% or less overhead)!”. For caches with write allocate,subblock placement. the average
memory subsystem contribution to the CPI over all benchmarks is 16% for 64K direct mapped
caches and 17% for 32K two-way associative caches. The DS5000/200 organization does well for
most programs. It is worth emphasizing that the memory subsystem performance of SML 'N]
programs is good on some current machines despite the very high miss rates: for a 64K write allo-
cate/no subblock placement organization with a block size of 16 byvtes, the write miss and read miss
ratios for CW are 0.18 and 0.04 respectively.

Recall that in Section 5.1 we argued that subblock placement would be a big win, but its
benefits would decrease for larger caches. Our data indicates that the reduction in benefits is not
substantial even for 128K cache sizes although a slight tapering off is seen in CW. This indicates
that 128K is not large enough to hold the allocation area of most of the benchmark programs.

The performance of write allocate/no subblock is aimost identical to that of write no allocate no
subblock (Leroy is an exception). This suggests that an address is being read soon after being
written; even in an 8K cache, an address is read after being written before it is evicted from the
cache (if it was evicted from the cache before being read, then write allocate no subblock would
have inferior performance). The only difference between these two schemes is when a cache block

“Lexgen’s graphs are a little different in that there is a steep drop in the instruction cache contribution to the
CPI in going from an 8K to 16K cache.

" nops constitute between 5.9% and 15.4% of all instructions executed for the benchmarks (see Section 1.3).
'®This overhead is so small that it is not visible in most of the breakdown graphs.

""For the penalties used, a 17% overhead translates roughly into one fetch from memory—instruction or data —
every 100 useful instructions.

12

is read from memory. In one case. it is brought in on a write miss: in the other. it is brought in
on a read miss. Because SML . NJ programs allocate sequentiallv and do few assignments. a newh
allocated object remains in the cache until the program has allocated another € bvtes, where Cis
the size of the cache. Since our programs allocate 0.4-0.9 byvtes per instruction. our results suggest
that a read of a block occurs within 9K-20K instructions of it being written.

5.3.2 Changing Associativity

From Figure 2 we see that increasing associativity improves all organizations. However the improve-
ment in going from one-way to two-way set associativity is much smaller than the improvement
ob:ained from subblock placement: in most cases, it improves the CPI bv less than 0.1, The
maximum benefit from higher associativitv is obtained for small cache sizes tless than 16K 1. How-
ever, increasing associativity may increase CPU cvele time and thus the improvements mav not he
realized in.practice (19].

From Figures 3 and 4 we see that higher associativity improves the instruction cache perfor-
mance but has little or no impact on data cache performance. The improvement observed in going
to a two-way associative cache suggests that a lot of the penalty from the instruction cache is due
to conflict misses and that from the data cache is due to capacity misses: the data cache is simplv
not big enough to hold the working set. When the code produced bv SML NJ is examined. the
performance of the instruction cache is not surprising: the code consists of small functions with
frequent calls, which lower the spatial locality. Thus, the chances vf conflicts are greater than if
the instructions had strong spatial localitv.

Surprisingly, for direct mapped caches (Figures 3 (a) and 4 (a)) the instruction cache penaltv
is substantial for caches smaller than 128K. For caches with subblock placement. the instruction
cache penalty dominates the penalty for the memorv subsvstem. The instruction cache penaitv
is reduced by the two-way associative cache organizations, suggesting a large number of contlict
misses in the instruction cache.

5.3.3 Changing Block Size

From Figure 2 we see that increasing block size from 16 to 32 byvtes also improves performance.
For the write allocate organizations, an increased block size decreases the number of write misses
caused by allocation. When the allocation area does not fit in the cache. doubling the block size can
halve the write-miss rate. Thus, larger block sizes improve performance when there is a penaltv
for a write miss 23]. In particular, larger block sizes have little to offer to caches with write
allocate/subblock placement. From Figure 2 we see that the write no allocate organizations henefit
just as much from larger block size as write allocate no subblock placement; this suggests that the
spatial locality in the reads is comparable to that in the writes.

Note that subblock placement improves performance more than even two-wav associativity and
32 byte blocks combined.

5.3.4 Changing Cache Size

Increasing the cache size improves performance for all configurations. In most cases, the perfor
mance improvement from doubling the cache size is small. We expect to see a sharp improvement
in performance for some larger cache size (perhaps 256K or bigger) once the allocation area fits
in the cache (this will not be nearlv as significant for caches with subbloek placement). From the
breakdown graphs we see that the cache size has little effect on the data cache miss contribution

13

to CPIL. Most of the improvement in CPI that comes from increasing the cache size is due to im-
proved performance of the instruction cache. As with associativity, cache sizes have interactions
with the cvcle time of the CPU: larger caches can take longer to accese. Thus. improvement due
to increasing the cache size may not be achieved in practice.

5.3.5 Write Buffer and Partial-Word Write Overheads

From the breakdown graphs we see that the write buffer and partial word write contribution to the
CPI is negligible. A six deep write buffer coupled with page-mode writes is sufficient to absorb the
bursty writes. As expected. memory subsvstem features which reduce the number of misses (such
as higher associativity and larger cache sizes) also reduce the write buffer overhead.

11

Cycles/Useful instruction

Cycles/Uselul instruction

28

2.6

24

8K

L write -no-alloc, no-subhlk,assx=1

write-alloc, subblk assoc=1

. write-alloc, nu-subbikussoc=1
a write-no-alloc no-subblk, assoc=2
© write-alloc.subblk,assoc=2
M C 7 write-alloc no-subbik, assoc=2
P& -
x::;,,_}ll“‘? & .- cw-nops
el [o
. o
. .
...... .
. . . .
16K 32K 84K 128K

{ and D cache sizes
(a) block size=16 bytes

¥ - write-no-alloc no-subbik,assoc=1
=m0 write-alloc,subblk.assoc=t
& - write-alloc.no-subblk.assoc=1
- write -no-alloc.no-subblik,assoc=2

- write-ulloc,subblk assoc=2

* write-alloc.no-subbik,assoc=2

_________________ He
. - .- .- .
16K 32K 64K 128K

1 and D cache size

(b) block size=32 bytes

Figure 2: CW summary, write buffer depth=6

15

] parnal word

it}

write bufter

3t WSS
2 . read muss
1.8 B rop

Cyclesiiseful Instiuctios

8K
| wd D cache size
(a) assoc=1

3
28
26 - B .
24 - | | parnal word
22 T write buffer

if miss

. read 1SS

CyclesfUseful Instructions

K 16K 312K 128K

1 and D csche size

(b) assoc=2

Figure 3: CW,write no alloc, no subblk,block size=16,wb depth="6

16 ’ |

Cycleaftseful Invnictions

CyclesA)selful insyructions

3
28 -
2.6
24 . partial word
22 wTile hutfer
2 D0t sy

read miss

* 1 and D cache size

(a) assoc=

3
238
26 —
4 - . partis] word
22 - write huffer
2 0f muss
1.8 read miss
1.6 W o
14
12

8K 16K 2K 64K 128K
1 and D cache size
(b) assoc=2

Figure 4: CW write alloc,subblk,block size=16,wb depth-6

L7

6 Conclusions

We described an in-depth study of the memory subsvstem performance of programs compiled with
SML/NJ. The important characteristics of these programs, with respect to memory subsvsiem
performance, were intensive heap allocation and the use of copving garbage collection.

In agreement with ‘30, 37, 38. 39], programs with intensive heap allocation performed pooriv
on most memory subsvstem organizations. However, on some current machines {in particular the
DECStation 5000, 200), the performance was good.

The memory organization parameter crucial for good performance was subblock placement. For
caches with subblock placement. the memory subsvstem overhead was under 17 for 6 1K or hizger
caches; for caches without subblock placement, the overhead was often as high as 1007,

While associativity. cache sizes. and block sizes affected performance. their contribution 1o
performance was usually small. Associativity and cache sices had little impact on data cadie
performance, hut were more important for instruction cache performance.

To summarize, most current machines support heap allocation poorly. Yor these machines,
compilers should avoid heap allocation as much as possible. However. with the appropriate memry
subsvstermn organization. heap allocation can achieve good memory subsvstem performance.

7 Acknowledgements

We would like to thank Edoardo Biagioni. Brad Chen, Olivier Danvy. Alessandro Forin, Ur< Hoelzie,
Kathryn McKinley. Erich Nahum. and Darko Stefanovi¢ for comments on drafts of this paper. \We
thank Peter Lee for his encouragement and advice during this work. We thank Brian Milnesand the
facilities at CMU for setting up the hardware according our everv whim. We thank Tom Dewev for
explaining the partial-word write mechanism in the DS5000 200 to us. We thank Andrew Appel,
Dave MacQueen and many others for creating SML,NJ. We thank James Larus {or creating qpt
and for answering the questions which arose while we were extending his tool. We thank Mark
Hill for creating his cache simulators. Tvcho and Dinerolll. Last but not least. we thank all the
members of the Fox project for their interest in this work and for accommodating our demand for
compute cycles.

References

‘1] Andrew W. Appel. Garbage collection can be faster than stack allocation. Information
Processing Letters. 25(4):275-279, 1987.

2] Andrew W. Appel. A Runtime System. Lisp and Symbolic Computation. 3(1):343 3x0.
November 1990,

‘3] Andrew W. Appel. Compiling with Continuations. Cambridge Universitv Press. 11492,
14] Andrew W. Appel. Personal communication. March 22 1993.

3] Andrew W. Appel and Trevor Y. Jim. Continuation-Passing, Closure-Passing Stvle. In
Proceedings of the 16th Annual ACM Symposium on Principles of Programming Languages.
pages 293-302, Austin, Texas, January 1989. ACN\I.

‘6] Andrew W. Appel, James S. Mattson, and David Tarditi. A lexical analvzer generator for
Standard ML. Distributed with Standard ML of New Jersev, 1989.

18

o

18

22!

23]

Thomas Ball and James R. Larus. Optimallv profiling and tracing procrams. In 7:7th
Sympostum on Principles of Programming Languages. ACN. January 19492

Anita Borg, R. E. Kessler. Georgia Lazana. and David W. Wall. Long address traces from
RISC machines: Generation and analvsis. Technical Report 8% 14. DEC Western Research
Laboratorv, September 1489,

Brian Case. PA-RISC provides rich instruction zet within RISC framework. Microprocessor
Report. 5(6), April 1991.

J. Bradlev Chen and Brian N. Bershad., The impact of operating svstem structure on
memorv svstem performance. In Fourteenth Symposium on Operating System Principles.
ACM. December 1943,

C.J. Chenev. A nonrecursive list compacting algorithm. Communications of the 13
13(11):677 -678, November 1970,

Rance (leaveland. Joachim Parrow. and Bernhard Stetfen. The Concurreney \Waorkbench: A
semantics-hased tonl for the verification of concurrent svstems. Transactions on

Frogramnung Languages and Systems. 1501036 72, January 19493,

W P Crowlev, C. P Hendrickson, and 1. F. Rudv. The SINPLE cade. Technical Report
UCID 17715, Lawrence Livermore Laboratory, Livermore, C\, February 197%

Cvpress Semiconductor. Ross Technology Subsidiarv. SPARC RISC User’s Guide. second
edition. Februaryv 1994,

Digital Equipment Corporation. DNS3000 200 KN02 System Module Functional Speification.

Digital Equipment Corporation. Palo Alto, CA. DECStation 3100 Desktop Workstation
Function Specification. 1.3 edition, August 1990.

7 Robert R. Fenichel and Jerome (. Yochelson. A LISP garbage-collector fur virtnal-memorvy

computer svstems. Communications of the ACM. 12(11):611-612. November 1969,

Robert Hieb, R. Kent Dvbvig, and Carl Bruggeman. Representing control in the presence of
first-class continuations. In Proceedings of the SIGPLAN 90 Conference on Proyramming
Language Design and Implementation, pages 66-77, \White Plains. New York. June 1990.
ACML

Mark D. Hill. A case for direct mapped caches. Computer. 21(12):25-40. December 1988,

M.D. Hill and A.J. Smith. Evaluating associativitv in CPU caches. [FEE Transactions on
Computers. 38(12):1612-1630, December 1989.

I Norman P. Jouppi. Cache write policies and performance. In Proceedings of the 20th Annual

International Symposium on Computer Architecture, pages 191-201. San Diego. California,
May 1993.

Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice-Hall. 1992,

Philip J. Koopman, Jr.. Peter Lee, and Daniel P. Siewiorek. Cache behavior of combinator
graph reduction. Transactions on Programming Languages and Systems, 1 1(2):265 277,
April 1992.

19

24

300

31

32,

33!

34

35]

36]

David Kranz, Richard Kelsev, Jonathan Rees. Paul Hudak, James Philbin. and Norman
Adams. ORBIT: An optimizing compiler for Scheme. In Procerdings of the SIGPLAN 'S6
Conference Symposium on Compiler Construction, pages 219~233, Palo Alto, California.

June 1986. ACM.

James R. Larus. Abstract Execution: A technique for efficientlv tracing programs. Software
Practice and Ezperience, 20(12):1241-1258. December 1990.

James R. Larus and Thomas Ball. Rewriting executable files to measure program behavior.
Technical Report Wis 1083, Computer Sciences Department, University of
Wisconsin-Madison, March 1992.

" H. Lieberman and C. Hewitt. A real-time garbage collector based on the lifetimes of objects.

Communications of the ACM. 26(6):419-129. 1983.

R. L. Mattson, J. Gecsei, D. R. Slutz, and [. L. Traiger. Evaluation techniques for storage
hierarchies. IBM Systems Journal, 9(2):78-117, 1970.

Robin Milner, Mads Tofte. and Robert Harper. The Definition of Standard ML. N1T Press,
Cambridge, Massachusetts, 1990.

Chih-Jui Peng and Gurindar S. Sohi. Cache memory design considerations to support
languages with dynamic heap allocation. Technical Report 860. Computer Sciences
Department. Universitv of Wisconsin-Madison, Julv 1989,

Steven A. Przvbvlski. Cache and Memory Hierarchy Des:yn: 4 Performance-Dircoted
Approach. Morgan Kaufmann Publishers, San Mateo, California, 1990.

Chris Reade. Elements of Functional Programming. Addison-Weslev. Reading.
Massachusetts, 1989.

Jonathan Rees and William Clinger. Revised report on the algorithmic language Scheme.
SIGPLAN Notices. 21(12):37-79, December 1936.

Michael Slater. PA workstations set price,/performance records. Microprocessor Report. 5(6).
April 1991.

David Tarditi and Andrew W. Appel. ML-YACC, version 2.0. Distributed with Standard
ML of New Jersey, April 1990.

Kevin G. Waugh, Patrick McAndrew, and Greg Michaelson. Parallel impiementations from
function prototypes: a case study. Technical Report Computer Science 90 "4, Heriot-Watt
University, Edinburgh. August 1990.

Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching considerations for
generational garbage collection: a case for large and set-associative caches. Technical Report
EECS-90-5, University of [llinios at Chicago, December 1990.

Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching considerations for
generational garbage collection. In 1992 ACM Conference on Lisp and Functional
Programming, pages 32-42, San Francisco, California, June 1992.

| Benjamin Zorn. The effect of garbage collection on cache performance. Technical Report

CU-CS-528-91, University of Colorado at Boulder, May 1991.

20

